“ AD~A146 858 ON A RANDOM DIFFERENCE EQUATION FOR MATRICES AND R
CHARACTERIZATION OF TH..<U) FLORIDA STATE UNIY
TALLAHASSEE DEPT OF STATISTICS E S TOLLAR OCT 84

UNCLASSIFIED FSU-STATISTICS-M676 ARD-19367. 18-MA F/G 12/1




BSNA IR R o

"
PR )

A
&

L

- A MDA S AN
Vata te T e aNata tat tntatat At s

1 2nd 2

2 i Wik il 4 Bod s XB TR

e R R e T N i S e

* sy s

FEEE
S EEE] <

EEFE FEFFETH

S EE

‘OPY RESOLUTION TEST CHART




AD-A146 858

OTIC FILE CORY

Research supported by the U.S. Army Research Office under Grant DAAG 29-82-K-0168.

Keywords: STOCHASTIC DIFFERENCE EQUATION, RANDOM MATRIX,

by

Eric S. Tollar

FSU-Statistics Report M676
USARO Technical Report No. D-73

P Y ARV ®)
il e -

October, 1984

The Florida State University
Department of Statistics
Tallahassee, Florida 32306

This document has been app:oved
for public release and sale; its
distribution is unlimited.

STORAGE LEVEL, GAMMA DISTRIBUTION,

AMS (1980) Subject classifications. Primary 60G99

ON A RANDOM DIFFERENCE EQUATION FOR MATRICES
AND A CHARACTERIZATION OF THE GAMMA DISTRIBUTION

Qe

A

W SUB-ADDITIVITY,
2

.......




e - w

On a Random Difference Equation for Matrices

o
iand a Characterization of the Gamma Distribution.
by
°
Eric S. Tollar
{ -
ABSTRACT o
. The present paper considers the stochastic difference equation Y‘n‘ = Mﬁyﬁfl + Q";
where Ml"‘ and Qﬁ are respectively random d x d matrices and random d-vectors, and ob- -
]
tains some veasonable sufficient conditions on Mﬂ and Qg under which Y;‘\ converges
in distribution. In addition, a particular model is examined when & = 2, in which
the asymptotic independence of Y'1 n and Y3 results in a characterization of the i'-, -
» ’
Gamma distribution. .
;o
4
e v

~\

= A . > ko band o a b ool o o 2 a0




1. INTRODUCTION

In this paper we study the limit distribution of the solution Yn of the

difference equation

(1.1) Y =MY , +Q.nz1,

where M , are random d x d matrices, and Qn and Yn are d-vectors (where 4 could be
considered infinite, unless otherwise stated). Throughout we take the sequence of
pairs (Mn, Qn)’ n 2 1, to be independent and identically distributed. Equation (1.1)
first came to our attention in a paper by Bernard, Shenton, and Uppuluri (1], in
which it was used as a model for the distribution of radioactive material in the
bone structure of humans. Since then, we have seen it arise in a variety of other
contexts (see Soloman [9], and Cavalli-Sforza and Feldman [2], for examples).

The asymptotic behavior of (1.1) is examined in [10] by Vervaat in the special
case where d = 1. A variety of conditions are given for the convergence in distri-
bution of (1.1). In [5], Kesten establishes a reasonebly general condition under

which (1.1) converges for the cases where d > 1. In [S5], it is shown that if
(1.2) EQn]|M|])* < =

then there is a constant a where

(1.3) « = im 1/n ||M, ... Mn“ a.s.,

noe

where for a d x d matrix M and a d-vector x, we define

(1.4) {IM]| = max |Mx|, and
|x| =1
(1.5) Ix| {‘Zl 2)*
. X = X .
gop 1

We then have in [S] that if
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L iuage a2

[1) e <0 in (1.3), and

(1.6)

lii) there exists a B > 0 where E|Q1[B < o,
then (1.1) converges in distribution.

The first objective of this paper is to establish criteria other than (1.6)
for the convergence of (1.1). While the conditions established will show that
(1.6ii) can be weakened, that is not the aim of this paper. Instead, the criteria
attempt to bypass what we perceive to be the major difficulty for applicability
of [5], that is, the extreme difficulty in the determination of a in (1.3).

In {7] and {10], the respective authors investigate possible limiting dis-

" tributions of (1.1) in the case when d = 1, and achieve some partial results in
clasgifying the limiting distributions. The second objective of this paper is to
examine what criteria on the model (1.1) for d > 1 will yield a limit behavior in
which the various components of the vector Yn are asymptotically independent for
a special model in which only a one-way reapportioning of material is sllowed. We
find that in most cases that non-trivial asymptotic independence is in general
achieved only if the linit distribution of the components is a gamma distribution.

As such, we arrive at a slight generalization of (Lukacs (6]).

2. CONVERGENCE OF THE DIFFERENCE EQUATION.

From (1.1), it is easy to see by iteration that

n
2.1 Y -121 Moo M Q ¢ M MY,

which, for given Yo has the same distribution as

n
(2.2) R, '121 My oooe M 0Q ¢ M el MY

M Y . o 2 _'. LT co-, . . L o - DO - . . ". - - c .
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We shall establish that in the case when M ... M 0 a.s. exponentially fast, under
weak conditions on Yo and Qn, (2.2) will converge almost surely, independent of the
distribution of Yo. Then a variety of conditions which should be reasonably easy to
check in particular cases will be given which are sufficient to guarantee that

"1 cee Mh converge to zero exponentially fast.

For convenience, for any matrix M and vector Y, we will use the typical notation

2.3) (m,

lj) E M ’ (Yi) H Y'

Also, let us use the following notation, given matrices Ml’ ves “n’ and vector x;

(2.4) M . Mo M,
d
(2.5) Ixlg, =1 Ix1,
i=1
(2.6) M| = s Mx] .
|1} ] I:T,-l fMx|

We now establish the main theorem in this section, which describes sufficient

conditions for the almost sure convergence of (2.2).

d
THEOREM 2.1: If there is a 0 < A < 1 where either i) A" sup (q Im, .(n)') + 0,
— e aue R A ——— 1
1sj<d i=1 *»J

a.s., E(lnIQiL’)+ < =, and |Y°|° <®, a,s., or 1i)2 "sup (glm (n)|) + 0, a.s.,

1<i<d j=1 13

E(In(sw|q, |)*) < =, and suply, .| <=, a.s., then R converges almost surely.

1,1 —_— 0,i n
1sisd 1<i<d

PROQF: The proofs that condition i) and condition ii) are sufficient for the almost

sure convergence of Rh are similar, and as such, it will only be established for

condition 1).
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We will establish that Rn is a Gauchy sequence with respect to the infinity -kq

norm, almost surely. That is, that for all ¢ > 0, there is an N where

2.7 P( |Rn-km|¢ <¢, ¥m, n > N) > y-¢.

We will ignore the term M1 MnYo. since it is clearly negligible. Then assuming

n>m, ]
d ]
(2.8) IRy Ryle = 1 'rn,i - Tl %
i=1 o]
3§ g *
j=m+l ia] k=) ' 1,k “ j’kl
-3 () 10,9V, .|
jome1 kgl 12 Lk Dla
Let
(m)
2.9) ={w:n sup (A" n < ¢},
CN v n=N 1<k<sd 1= 1l h €
we have from (2.8) that
n d
(2.10) IR -R|, = I (w) Z {nj’ﬂqj o

(i -1)
I ( )
A 121 kzl(ig NI EE

vhere 1 A(x) is the indicator function of a set A.

Thus, from (2.10), we have that

(2.11) P(IR,,-F\,I. > ¢, some n,m > N)

<P + P( 1 &ex"‘lq, xl > €)
jaNel k=l *

- §-1 e
" PGy ¢ N:anf Iyl > o =




.s-

' =
: By lemma 2.2, to be presented later, we have that ) Ai’llQi|° converges almost
i=]

surely if and only if B(lnIQ1 IQ)’ < ®», From condition i) we have that there exists

a8 A, 0<)<l, such that we have that for sufficiently large N, P(Cn) > 1-¢/2 for all

| . n > N. Thus, it is easy to see from (2.11) that for sufficiently large N,
(2.12) P(an-%IQ >e,somen, m>N) <c/2 ¢+¢/2 =¢,
I which establishes the theorem. 8]

In [10], Verwaast establishes the lemma cited above (which is actually more
general than the current requirements), which we now state for the sake of complete-

[ ] ness.

LEMMA 2,2; For {X }, (Y }, i.i.d. random variables, where -= <B(1n'|x1|)< 0, then
n i-1

i (n xj)vi converges a.s. if and only if E(lnlYll)’ < o,

i=1 j=1

WNe will now establish several criteria which are sufficient for the exponen-

tially fast convergence of M1M2 Mn’ To do this, we will appeal to a general

lemma about functions on the matrices.

LEMMA 2,3: If (An} is a sequence of i.i.d. random matrice, and f is some function

such that f(AiAj) < f(Ai) f(Aj) and E(In £(A,}))< 0, then there is a A, 0<i<l where
—_— —_— -_
P(£( T A) >A" i.0.) = 0.

ey 1

PROOF: By assumption, we have that

n n n
(2.13) In £( N A) < In( T £(A)) = ] In £(A)).
i=1 is1 i=1

Thus, if we define § = -E In f(Al), we have for any y where O<y<§ that

(2.14) PC Y In £(A)) > - 1.0.) = 0. e
i=1 -‘.;.:_.

As such, from (2.13) we have that
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(2.15) P(E( 1 Ai) > e"mi.o.) < P( E in f(Ai) >-m i.0,) = 0.
i=1 i=]

We get that for all A > e'e the assertion is true. o

Now we establish the first sufficient criteria for the convergence of R“

which should be reasonably easy to verify in certain cases.

THEOREM 2.4; If E 2n (|[M|]) <0, E tn(lq;| )% < =, and |¥ |, <= a.s., then R,

converges almost surely.

PROOF: By condition i) of Theorem 2.1, we need only establish that
d
A" sup ) |m1‘('j‘)| + 0, a.s. This follows quickly from Lemma 2.2 by noting
‘ISde in] »
that for all x where |Bx|_ = o0,

| aBx],,

Bx|,,

(2.16) |ABx|_ = |Bx|_ < |lA}]_IBx],,

where the inequality follows from the definition of theorem (2.6). Thus we have that

[{aBll, < [{all, 1IB]l_. As such, from the assumptions and lemma 2.2 we have that

(2.17) (|| 1 Mll, > 2" 1.0 = 0.
i=1
This yields that for A < Al < 1, we have that
(2.18) A M :M Il +o0, a.s. .
1 il

As can be easily established from (2.6), we have that

n d (n)
(2.19) I awll, =sw ([ lo 3D,
§=1 1sj<d i=1 **
and the theorem is completed. 0
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While the condition E znllulllu < 0 is not as formidable a condition to check
as at first it appears, since formula (2.19) gives some hope of verifying
E znllulll, < 0, nonetheless it is perhaps too difficult for certain models. The
following theorem gives a simpler condition to check.

Using the matrix notation E|M| = (E|m, J.|) , we have the following theoren.
?

THEOREM 2.5. If d <= |[EfM| [I, <1, B an(lQi)” < =, and [¥yl, <=, a.s.,

then R ,, Sonverges almost surely.

PROOF: Once again, by condition i) of theorem 2.1, we need only establish that for

0<x<1, A" sy () |mi(3‘)|) + 0, a.s. Since ||E|M(1)'|||Q< 1, we can choose a
15§54 is1 1o

A and A, where ||E|M(1)| [y <A, <A <1. From (2.16), we have that
n n n

(2.20) IIkI-IIEIMkI He = kglllﬁlukl I, < 2"

Also, we have from the independence of the matrices

d d
(2'21) Elmif§)| . Blkzl ml.i,k mz.t;j l Skzlﬁlmlhitklalmzik’jl’

which alongwith (2.19) and (2.20) yields

n
n
(2.22) e ... | 1, < Ilkr_tlﬂlukl e <2y
Also, we have for \ > Al that
[ d ® d
(2.23) PC ™ sup (§ Imi(';)l) < ¥ PO Msup ( Zlmi(‘;)h > €).
nem+l 1<§<d is] n=m+l 1<ks<d =1 *°

P =N 01 a (n)
e Esup(zlmijl)-
nsm+l 1<j<d i=1

L4

Since
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(2.24) E sup (“)| < { E { |m (“)l $d s Z Elm, f“)
1<5j<d 181 j=1 | i=} isl ;
=d lefw ... M1,
we get from (2.23) that 2
’
- ( )| T a1l |
(2.25) Pl u 2™ sup 2 |m Pil>el sy ate alfetm, ... M [, L
nem+l  15jsd {isl n=nel o
® 2, In A, {mel A 1-1 ’
sV aef Y agetl -2 ;
namel L A A A o
vhere the second inequality follows from (2.22).
As such, for m sufficiently large, we have ’ .
3
. (n)
(2.26) Plu A" sup 2 |m, | <e,
nem+l  IsSjsdiisl »3
which completes the proof. 0 —

We now introduce another functional on matrices which is very similar to the
spectral radius, first introduced by Dobrushin [3] in the case of stochastic
matrices. For any dxd matrix P = (piJ) let us define an auxiliary matrix

P = (pyy) by [
[ if i=1, j=l
0 if 4 >°1, j=1
(2.27) Byy = 7 1 IP gy AF 401, 5 > 1 )
| Piajga 121321
Then we define our functional §(P) by ._ : :
del ]
(2.28) 8(P) = 15131‘:de+1[)-1 [Pyi- Psu) ]

LEMMA 2,6: For any dxd matrices P, Q, where . o

= 3 Q.| <=, 6(PQ < 5P
15924 1-1 i"] py [1-1' 1 ] ®

o

Q.

R 2
el A

b .'_."_~ "'

ST S S, Y I PP A___—" P . . L o P S S 3 e - Lo




PROOF: The fumctional § is very similar to that of Dobrushin [3]. An examination
of the proof that for stochastic matrices P, Q”, we have §(P'Q') < §(P')6(Q"),

(see, Isaacson and Madsen [4]), yields that the crucial properties are

d+1l
i) . . =21, for all i
U
(2.29) del del o - .
b ~ rS _ ~ - p '(q' - q. ) all 1’ k-
) (12 Py Gy -4 st e P ™ 9

Since both are satisfied by the definition of £, §, the proof is complete. 0

It should be noted that &(¢) and !|-|[ are very similar. In fact, if P is a

non-negative matrix, then it is easy to show that §(P) = |1Pl|_,. However, if P is
allowed to have negative values, it is possible that §(P) < [ipl]_ or Hrll, < s@.

Because of this similarity in behavior, it is easy to see that a theorem similar to ]

theorem 2.4 can be established for G(M&) by methods identical to those used in ?‘;7
theorem 2.4, (we need only notice that from (2.28) we have §(P) 2 sup ( Z Pig +), o
1<isa j=1 J o

d d 1

§(P) 2 sup (] pj;), which yields that 26(P) 2 sup ( § lpi.l)). As such, we - g
1<i<d  j=1 1gi<d j=1 1 —

state without proof the following theorem.

Voo
e
R Ve
aar

Theorem 2.7. If E In§(My) <0, E 1n(|qlL)‘ <=, and |Yg|, <= a.s., then R T

converges almost surely.

It should be noted that theorems 2.4, 2.5, and 2.7 were applications of con-
dition i) of theorem 2.1. It can be easily seen that by considering Ml', the trans-
pose of Ml' that theorems similar to 2.4, 2.5 and 2.7 can be established using con-
dition ii1) and virtually identical proofs to the theorems already established in-

stead. However, both the statements and proofs of these theorems will be omitted in

this paper.

..........
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3. LIMITING INDEPENDENCE FOR A PARTI D

In {7] and {10], the respective authors investigate possible limiting dis-
tributions of (1.1) for the case of d=1, and achieve some partial results in clas-
sifying possible limiting distributions. For d=2, we will examine for a special mo-
del the conditions under which the two components are asymptotically independent.
The model to be considered is the difference equation
3.1) (-:1':] - (1-:“ wo] (:1.:;-1] * (Q3 ]'

2, n n 2,n-1
where {Vn,Wn.Qn} is an i.i.d. sequence, and V ,w ,Q are independent of each other
for all n. This represents a one-way flow storage model, in which at step n new
material is added to component one via Qn’ material is transferred from component
ofte to component two via 1-vn, and material is lost from the system from component
tvo via 1'wn°

For the model given in (3.1), if we let xn $ Y, and let

isyY, + ity
¢(s,t) = E(e 1 2

isql
¥(s) = Ee »

)
(3.2)

then it is easy to verify from (3.1) that

(3.3)  4(s,1) = WSIEH(sV) + t(1-V)), tH).

Since Y, and '.'2 are independent if andonly if ¢(s,t) = ¢(s,0) ¢(0,%), we have

1
from (3.3) that

(3.4)  ¢(s,t) = y(s) !54&(:w1 + t(l-vl) ,0) E@(o,twl).

Also from (3.3) it can also be slgvn that

''''''''''''''''''''''''''''''''''''''

. .
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(3.5)  4(s,) = ¥(s) Eg(sV;,0) E4(t(1-V)) ,tW,)

b If we let
' (3.6)

A=(s: Y(s) =0or B¢(0.$Wl) = 0},

= Y(s) B¢(3V1,0) E¢(t(1-Vl),O) E¢(0,twl).

PRt et e o

and if_Ac is dense, then by equating (3.4) and (3.5) one can see that for all
(s,t) € ASxA® that

3.7 B¢(3V1 + t(l-Vl) ,0) = E¢(SV1.0) E.¢(t(1~Vl) 0) .

Then, by continuity of characteristic functions, we get that (3.7) holds for all
(s,t) €R x R, Thus, under conditions sufficient to guarantee that AS is dense, we
get from (3.7) that Yl, Y2 are independent if and only if for v1 independent of
Yl' V1Y1 and (1~ 1)Y1 are independent.

In the following, we will say
0 if xs0
(3.8) X~ T(A,g)if P(X s x) = x
fo tee) Ao ¥ e My 1€ x > 0,
and
0 iIfxs0orxz1
(3.9) X~ B(a,B)if P(X s x) =
]: B(a,8) "1 y*1(1-y) B lay if 0<x<l.

The main result of the section is the following theorem.

THEOREM 3.1: For model (3.1), if \ll and Yl are independent then \rlY1 9_{

(l-Vl)Yl are independent if and only if ome of the following six conditions are

true:
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1) Y, 0
2) Yl g ¢, vl g d
3) vy =0
4) v1 s 1

$) Y, = r(xa*f), V; ~ B(a,B)
6) .Yl ~ P(X,O’ﬁ)'. vl ~ B(G.B)

To establish theorem 3.1, we will first establish the following lemma and

intermediate theorem.

LEMMA 3.2: Let U,W be independent random varisbles,where U > W > 0. Then U(U-W)~}

and U - W are independent if and only if U= ¢, W=d, c >4 > 0.

PROOE: It is clear there must be a constant e where
(3.10) P(U>e) = P(WSg)al

If not, then we could find a b where P(U s D) > 0, P(W >b) >0, but -
P(U<Db, W>Db) = 0, a contradiction.
tet
f .
b2 = inf {b: P(WsbH) =1},
(3.11)
bS = sup {b: P(U20b) = 1},

Then0<W$bzsb3$U.

Sinceu-wzbs-bz.stz.wehavethat

3.12) vw-mts -

2

‘.' .'..v . !

P
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T T
S S

[T

[ |




Lala e o on o o 2

T

—r—

Also, it is clear P(U - W < l:u3 - bz +¢) >0, for all e > 0.
Since U(U - K)'l. U ~ W are independent, we have that

(3.13) Puu - Wt > by(by-b,+e) ) = P(UU - WL > bylby-byee) U - W < by-bj+e).
And U - W < bs-bzwe implies

(3.14)
As such, we have that U - W < b _-b

(3.158)

Thus P(UCU - W)L >
As such, from (3.13), we get
(3.16)
Combining (3.12) and (3.16), we get P(UCU - W)~} =

which in turn implies U= b

Using this lemma, we can establish the next intermediate theorem.

RUEOREM.3.3. 1f Y, 2 0, and if V,,Y; sre independent, then V;Y, and (1-v,)Y, are

independent if and only if one of the five conditions below are true:

U< bsﬂ: and W » bz-e.
9*€ implies

U -mls1.

3
*9,-b.ec *

_28|U-W<b3-b2¢e)slforalle>0.

puw - 0L 2

3
) = 1.
3702

5.5 =}

1)
2)
3)
4)
5)

...........

.......

c, \!1 £d,
T(),a#B), V ~ B(a,8).

t

............................
...............................................................
....................

- . -

-l
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FROOE: The sufficiency is obvious, so we need only establish the necessity of the

conditions. For convenience, let

(3.15) X =V, 2= (Q-V)Y,.

Further, let
[ Ap={Y, =0} ={X=0, 2=0}
Az-{Y1>0,Vl<0}s{X<0,z>0} .- -
k.
Ay = 1Y, >0, V, =0} ={X =0,2>0} :
(3.16) 1 A4-{Y1>o.0<vl<1}=(x>o,z>o}
Ag = {Y, >0, V, =1} = (X >0, Z = 0} L
L.
AG-{Y1>0,VI>1}-{X>0,Z<0}. o
\

Also, for the random variables Vl. Yl’ X, Z, we define, respectively, the ...._._.
variable V,, YA' A 2A for any arbitrary set A as the restriction of the variable .
to the set A. That is, the distribution of variable VA is given by
(3.17) PV, < %) = [P(VeA)]™! B(V 5 x, Ven) -
with the other variables defined identically.

As can be easily established, if Vl and Yl are independent, than VA' and

i
YAi are also independent for all i. Similarly, if X and Z are independent then so '**
are X,. and Z, for all {i.
Ay Ay oA

To prove the theorem, we examine three cases,

1) P(YIOO) =1 2) P(Y1=0) <1, P(0<V1<l) > 0 and 3) P(YIUO) <1, P(0<V1<1) =0

CASE I: P(Y,%0) = 1,

In this case, we have nothing to prove, this being condition 1) of the theorem.

..............
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CASE 11: P(YI-O) <1, P(0<v1<1) > 0.

In this case, P(A4) - P(Y1>0)- P(0<V1<1) > 0.
Clearly XA‘ >0, ZA4 > 0, and )(A4 and 2A4 are independent. Also VA4’ YA4
independent, and as can be seen from (3.15), we have

are

X, +«2Z, =Y, , X (X
Ay Ay A TATA,

-1
oY, ) "=V, .,

Thus from Lukacs characterization of the gamma distribution (see [6]), we have that

(3.18) XA4 ~Tr(2,a), 2A4 ~ I'(A,8) - 1
Also, we have that
(3.19) Y =3X +Z  ~T(A,0¢8).
Ay Ay A ’ b
Since Y{Y>0} ~ YAi for i # 1 (from the independence of Y1 and Vl), we have ‘ 1

for any i = 1 where P(A.) > 0, that B

(3.20) Y, ~ YA for i = 1.
1 4 .-
By similar arguments, we can also establish that for any i where P(Ai) >0, R
]
we must ha've X ~ x for i > 4. “::
A A A
(3.21) -,
7, ~2, for l<i. T
A A S
Let us assume P(Az) > 0. Then by letting
(3.22) Us= z"z' Wa -xAz, o

we have that U > W > 0. As ean be easily established, U, W are independent, and
-1
W(U-W) °, U-W are independent. Also, since l!(l.l-\\!)'l = u(u.w)'1 -1, we can apply

Lemma 3.2, yielding ZAZ z ¢, x“z g -d. But since ZA ~Tr(r,8), and from (3.21) we

4

have zAz ~ ZA4' we have a contradiction which yields that P(Az) = 0,

If P(AG) > 0, we can generate by similar methods a contradiction for the

distribution of xAG’ so P(A6) =0, If P(As) > 0, we have XA =0,s0Y, =2 |,
3 NN

3 AS A

'''''''''''''''''''''''''''
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But from (3.20) and (3.21), we have Y, ~ I'(A,p) and 2, ~ I'(),a+8) yielding by con- ]
3 3
}
tradiction that P(As) a 0, Similarly, we can show that P(As) = 0, yielding that ST
P(0<V;<1) = 1. Thus we have that, letting p, = P(Y, = 0), that %
U]

(3.23) P(Xsx, 2s2) )
= p, 1(X=0,220) + (1-p)) T(H,a)(x) T(A.B)(2) |

Since P(X=0)aP(2=0) = P(X=0, Z=0) = Py from independence of X and Z, we have that
P, = plz which yields that P = 0 since p; < 1. This yields condition S) of the

theoren.

CASE III: P(Yl=0) <1, P(0<Vl<1) =0,

Since P(Q<Vl<1) = 0, we have P(X>0, Z>0) = 0. Thus, either P(X>0) = 0, or
P(Z>0) = 0. Assume P(Z>0) = 0. Then P(VISO) = 1, In addition, assume that

P(v1<0) > 0, so we have P(AI) > 0, and by applying Lemma 3.2 to X, , 242' we get

2 d, ¢c>d>0. Thus Y, =2, + X '

A Ay Ay A

ws have P(A,) > 0. By (3.20) and (3.21), we get that Y, ~ YA'z. =c-d, and

Z, =¢, X

A = c-d>0, 1f P(Vl=0) > 0 also,
2 ;

_ 3
Zy ~1Z, =c. But we must have Z, =Y, , which gives a contradiction. Thus,
s .

Ay ” A3

if P(Vy < 0) >0, then P(V, = 0) = D which yields that P(V, < 0) = 1.

Thus, we have for l’(Y1 =) = Py

P(X=0, Z20) = p, .
(3.24)

P(X=-d, Z=-c) = (l-pl) ’

which clearly contradicts the indcpendence of X and Z unless P 0 or P = 1. _
Thus we have X and Z are degenerate, which yields condition 4).

R vl
. . PPN
USSP PSR A I I

If we assume instead that P(VI-O) > 0 in addition to P(Z>0) = 0, a contra-

diction similar to the one above will show that P(V,=0) = 1, which is condition 2). - 4
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If we assvme that P(X>0) = 0, arguments identical to those above will show

that P(Vlsl) = ] or P(Vl>l) = 1, which yield, respectively, condition 4) or comn-

dition 3). 0
h ) We are now ready to establish the main theorem of this section.
THEOREM 3.4, If Vs Yl are not both degenerate, then Vio Yy independent and Vl_Yl

and (1-\11)Y1 are independent if and only if one of the five conditions below are

true:
1) Yl £0,
2) V1 £0,
3) vl 1,
4) Yl ~ T'(A,0+8), Vl ~ B{a,B)

5) ’Yl ~ P(A,Q’Blp vl ~ B(“DS)‘

PROOF: Again the sufficiency is obvious, so we need only establish the necessity of
the conditions. If we have either P(le()) =1, or P(YISO) =], then by theorem

3.3 we have that one of the 5 conditions must hold (where the new condition,
condition 5) follow when P(YISO) =1). Thus from now on we will assume

P(Y1<0) >0, P(Yl>0) > 0.

In addition to the sets Al to A6 defined in theorem 3.3, we define the sets

[ Ay = {Y,<0, V <0} = {X>0, 2<0, X+2<0}

A8 = {Yl<0, VI-O} = {X=0, Z<0} B

(3.25) 1 AT {Y1<0. 0<V1<1} = {X<p, Z<0}

10
l An = {Y1<0, Vl>1} = {X<0, Z>0, X+Z<0},

A, = (Y1<o, V1‘” = {X<0, 2=0} _:.;_-_

A

.o S
A b A S S0 A

LAV LI S S SR S
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and we redefine

AZ = {X<0, Z>0, X+Z>0}

(3.26) A

6 {x>0, Z<0, X+Z>0}

Note that while for all i, Ai can be expressed as Ai. = {YleA. VleB} (for some
- borel sets A, B) the sets Az, A, A7, All’ cannot be expressed as sets of the
h form {XeA, ZeB}.
Let us assume in addition to P(Y1<0) >0, P(Yl>0) > 0, that P(0<V1<1) >0
(this assumption will be shown to yield a contradiction later).
Thus we have P(A4) >0, P(Ag) > 0. By appealing to Lukacs characterization

as in Theorem 3.3, we get

.27 x‘\4 ~ “"1’“1)' zA4 ~ r(xl,sl). YA4 ~ r(Al,alwl)
-X ~ rllzpuz)i -z, ~ :r(AZ’Bz)a -YAQ ~ P(Xl.ﬂl*B?-

By arguments similar to those used for (3.20) and (3.215, we have that if

P(A6UA7) > 0, P(AZUAn) > 0, then

x%mi. -ZA6UA7. ~ r(lloal) x P(AZ.BZ)

3.28

Since P(A6UA7) > 0, assume that P(As) > 0. Thus we get for Xy > 0, ¥ < 0
that o, a,~1 -Aa.x 8 B,-1 A,Z LS
a A 1,177 A, 2(-Z) 2 e % gxdz S
(3.29) P(X, $x),2, sz =[f Lo
6 6 A r(al)t‘(Bz)P(%)

where As {(X,2) : X<Xg, zSzo, x+2>0}.
Also, by arguments similar to those used for (3.20) and (3.21), we have that L

(3.29) YA6 = xA6 ® zA6~ r(xl'al’sl)' ‘..:.._;
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Thus, by transformation of variables in (3.28), we get that

I

‘ 8

. 8 a, + B8,.-1 F(a,*8,) X, 2 = a,-1 -(x,*2,)w B8,-1

: 1 1 1 171 2 1 172 2

- (3.30) A Ty " TGEOTGEIFGRY o™ e W

. 1 1 6

By examining the behavior of the right hand side of (3.30) and the left hand side

l of (3.30) (particularly as y approaches 0), we get that equality is impossible
for e > 0, Bl > 0. Thus, we have that P(As) = 0. Similarly, we can establish
that P(A.,) =0, Thus P(X>0,Z<0) = P(A60A7) = 0. However, since we have

assumed that |’(\fl >0) >0, l’(Y1 <0) >0, and P(0 <V, <1) >0, we get from the

1
definition of X and Z (see (3.15)), that P(X > 0) > 0, P(Z < 0) >0. This yields
a contradiction in the assumption P(0 < Vl < 1) > 0. Thus, we conclude that
P('0<V1< 1) = 0, and we have that P(X > 0, Z> 0) = P(X < 0, Z < 0) = 0.

From this, we can quickly deduce the rest of the criteria. Since
l’(Y1 >0) >0, and P(Yl < 0) > 0, then the assumption that l’(V1 < 0) yields from
(3.15) that P(X<0) >0, P(Z > 0) > 0, Independence of X and Z yields that
P(X <0, Z <0) » 0, which is a contradiction. Thus, l’(v1 <0) =0. In a similar

manner, P(\ll >1) = 0. Thus l’(\l1 = 0) ¢ l>(v1 al) =1, If l’(v1 =0) >0,

l’(V1 = 1) > 0, we again can show from (3.15) that P(X > 0) > 0, P(Z > 0) > O,
which again contradicts P(X > 0, Z > 0) = 0. Thus we have either P(V1 =0) =0,
P(V1 = 1) = 1 (condition 3) or P(V1 =0) =1, P(V1 = 1) = 0 (condition 2). [

To relate Theorem 3.4 - to the asymptotic independence of Y1 n and Yz n*
» »

we only meed to observe as remsrked after (3.7) that for any condition sufficient

l to guarantee the density of A® (see (3.6)), Yl and Yz are independent if and only i
if for V,, Y, independent, VY, and (1-V,)Y, are also independent. As such, for ]
AS dense, Theorem ‘3.4 gives the necessary and sufficient condition for

. asymptotic independence. The most reasonable and realistic condition on

(Qn’vn'"ri} for Theorem 3.4 to be applicable are given in the following

corollary.
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COROLLARY 3.5 ~ 1£Q, 20, 0SV 1, W 20thenY ~andY, are -

asympbtoticaliy independent if and only if Qn has a Gamma distribution and vn

has a Beta distribution, or one of the four trivial conditions of Theorem 3.3
are met by Qn and Vn .

The proof follows immediately from Theorem 3.4 and the fact that the
characteristic functions of non-negative random variables have dense support

(see Smith {81).

Clearly, other restrictions to Qn' Vn. and "n will yield that the only case

of asymptotic independence of Y, and Y, n 8¥e when Q has a Gamma distributiom
» »

1.

and V A has a Beta distribution. However, the more interesting question of s

characterization of the distributions of Qn. Vn and Wn that result in Yl n and
' 4

Yz n being asymptotically independent appears to be an open question.
]
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